Interventions The intervention group received a tailored package of text messages for up to nine months in addition to usual care. Text messages provided information, support, motivation, and reminders related to diabetes self management and lifestyle behaviours. The control group received usual care. Messages were delivered by a specifically designed automated content management system.
The reasons underpinning the considerable increase in incidence over the study period are unclear. This may reflect an actual change in the type 1 diabetes incidence in patients <15 yr. Alternatively, it may reflect an earlier age of onset without change in incidence over all ages, so that greater numbers of people are being diagnosed with type 1 diabetes in adolescence rather than in young adulthood. This would be consistent with the ‘accelerator hypothesis’, which suggests that an increasing rate of obesity is a primary driver for an earlier age of diabetes onset [6]. Studies have shown an association between higher BMI and younger age at diagnosis [9], [10], [11], indicating greater adiposity in childhood may hasten the onset of diabetes mellitus. The ‘accelerator hypothesis’ predicts an early onset rather than increased risk [11], and a Swedish study examining type 1 diabetes incidence on a nation-wide cohort 0–34 yr showed a shift in age of onset towards younger ages, rather than an increase in incidence per se across the whole population [20]. Although we cannot rule out a similar phenomenon in Auckland, we did not observe an increase in BMI SDS among children recently diagnosed with type 1 diabetes, or an association between BMI SDS and age at diagnosis. In fact, we observed an actual increase in age at diagnosis which is inconsistent with the ‘accelerator hypothesis’. Thus, our data suggest a true increase in the incidence of type 1 diabetes in the Auckland region, and not changes driven by increasing adiposity.
There were 884 new cases of type 1 diabetes, and age at diagnosis rose from 7.6 yr in 1990/1 to 8.9 yr in 2008/9 (r2 = 0.31, p = 0.009). There was a progressive increase in type 1 diabetes incidence among children <15 yr (p<0.0001), reaching 22.5 per 100,000 in 2009. However, the rise in incidence did not occur evenly among age groups, being 2.5-fold higher in older children (10–14 yr) than in the youngest group (0–4 yr). The incidence of new cases of type 1 diabetes was highest in New Zealand Europeans throughout the study period in all age groups (p<0.0001), but the rate of increase was similar in New Zealand Europeans and Non-Europeans. Type 1 diabetes incidence and average annual increase were similar in both sexes. There was no change in BMI SDS shortly after diagnosis, and no association between BMI SDS and age at diagnosis.
The incidence of type 1 diabetes mellitus has been increasing worldwide [1], [2], [3], and it appears to have been particularly pronounced among children <5 years of age (yr) [3], [4], [5]. This increase has been suggested to be associated with the ‘accelerator hypothesis’ [6]. Although this hypothesis is not universally accepted [7], it predicts that higher BMI is associated with younger age at type 1 diabetes diagnosis [8], which has been demonstrated in some studies [9], [10], [11].
Owing to time restrictions, longer term follow-up of participants was not feasible within the current study, although it is hoped that a two year follow-up of the present study’s participants is possible. The significant group difference seen at three months, dropping slightly at six months, but reaching significance again at nine months, could be an indication of sustained change. Another limitation of the study design was that secondary outcome assessors were not blinded to treatment allocation, which could have introduced bias in follow-up data collection of secondary variables.
New Zealand has a population of approximately 4.4 million people, the majority being of European descent. Auckland, the largest city in New Zealand, is the most ethnically diverse, with approximately 11% of people identifying themselves as indigenous Maori, 14% as Pacific, and 19% as Asian [12]. By international standards, the incidence of type 1 diabetes in young New Zealanders was assessed as moderate at 17.9 per 100,000 [13]. However, this figure was obtained from a 2-year snapshot, and did not provide information on possible time trends on type 1 diabetes incidence. In addition, previous studies on type 1 diabetes incidence in New Zealand are out of date or refer to a specific geographical region [14], [15], [16].

Your health professional at the Centre may suggest that they make a referral for you, if there are problems affecting your diabetes management or your overall health and management. Alternatively you can ask your family doctor or nurse to refer you. If you are uncertain about whether it would be helpful to see us, you are most welcome to phone us directly to discuss this. Phone 3640 860 ext 89113.
For example, adjusting to having diabetes; difficulty in making the life changes necessary to stay well; difficulty managing anger, conflict and other emotions related to your health; depression, sadness and grief; anxiety, worries, panic and phobias related to your health; eating difficulties; and difficulty with coping with the complications of diabetes.
SMS4BG is an automated self management support programme delivered by SMS (short messaging service) to motivate and support people to engage in the behaviours needed for successful diabetes management. The programme was tailored by the needs and goals of the individual, and demographic factors. As well as core motivational and support messages (in Māori, Pacific, or non-Māori/Pacific cultural versions), participants could opt to receive additional modules including those for: insulin control, young adult support, smoking cessation, lifestyle behaviour (exercise, healthy eating, or stress/mood management), and foot care (further module details in supplementary table 1).

Lack of insulin results in ketoacidosis. Ketones are acids that develop in the blood and appear in the urine. Ketones could poison the body and this is a warning sign that the diabetes is out of control. Symptoms of diabetes involve nausea, shortness of breath, vomiting, fruity flavor in breath, dry mouth, and high glucose levels. Complications associated with diabetes are retinopathy, neuropathy, nephropathy, heart disease and gangrene. Hypoglycemia or low blood sugar is yet another problem associated with diabetes mellitus. Symptoms include hunger, tremor, seizure, sweating, dizziness, jerks, tingling sensation and pale skin color. Improper management of diabetes causes low blood sugar, which in turn causes hypoglycemic coma. It is a life threatening condition.

Blood glucose tracking is the most common feature of diabetes apps [5,14], with other features including record of medications, dietary advice, and tracking, such as carbohydrate content calculation, and weight management support [5,11,12,14-16]. Additionally some apps recommend insulin dosing based on users inputs of glucose levels and estimated meal carbohydrate. Meta-analysis of 22 trials including 1657 patients in which use of mobile phone apps supporting diabetes management was compared to usual care or other Web-based supports showed that app use led to a mean reduction in HbA1c of 6mmol/mol that is 0.5% [9]. This compares favorably with the glucose lowering of lifestyle change, namely diet [17] and oral diabetes medication [18].

It’s heart-wrenching to watch all that people go through as natural disasters play out on our television screens. Tucked away, along with sympathy for those in the midst of a hurricane, earthquake, flood or other catastrophic events, is the very understandable thought, “I’m so glad that’s not happening to me!”. The truth is, however, that we are all susceptible to major life-changing events, and they can happen with very little notice. Those with a chronic medical condition, like diabetes, are especially vulnerable and should take seriously the advice to be prepared.    (more…)
Conclusion A tailored, text message based, self management support programme resulted in modest improvements in glycaemic control in adults with poorly controlled diabetes. Although the clinical significance of these results is unclear, the findings support further investigation into the use of SMS4BG and other text message based support for this patient population.
Diabetes is a metabolic disorder, which is accompanied by high blood glucose levels. It is a result of improper functioning of the pancreas, which secretes the insulin hormone. Lack of insulin, result in ketoacidosis. Makhana or Fox nut is a sweet and sour seed, which is also known as Euryale ferox. These seeds contain starch and ten percent of protein. There is no supporting literature for its positive association with diabetes. Therapeutic effects of fox nut involve its strengthening of kidney. It also helps to relieve the dampness, associated with leucorrhoea. It also regulates hypertension or high blood pressure. It is also beneficial for individuals with impotence and arthritis. Fox nuts are effective for individuals with high risk of premature ageing. It is also known as gorgon nut, is also helpful.