It’s heart-wrenching to watch all that people go through as natural disasters play out on our television screens. Tucked away, along with sympathy for those in the midst of a hurricane, earthquake, flood or other catastrophic events, is the very understandable thought, “I’m so glad that’s not happening to me!”. The truth is, however, that we are all susceptible to major life-changing events, and they can happen with very little notice. Those with a chronic medical condition, like diabetes, are especially vulnerable and should take seriously the advice to be prepared.    (more…)
Mobile phone ownership rates are increasing. Similar to trends seen in the United States and Canada, where mobile phone ownership is 72% and 67%, respectively [20], 70% of New Zealanders own a mobile phone, making diabetes apps potentially available to most people [21]. Limited research exists into the use of diabetes apps in New Zealand. However with increasing rates of both diabetes prevalence and mobile phone ownership, access to safe apps is essential for both HPs as potential app prescribers and patients as app users [21,22]. In Scotland, a survey of people with diabetes found high mobile phone ownership (67%) with over half reporting an interest in using apps for self-management of diabetes, but app usage in only 7% of responders [23]. The objectives of this study were (1) To establish whether people with diabetes use apps to assist with diabetes self-management and which features are useful or desirable, and (2) To establish whether HPs treating people with diabetes recommend diabetes apps, which features were thought to be useful, and which features were they confident to recommend.

The reasons underpinning the considerable increase in incidence over the study period are unclear. This may reflect an actual change in the type 1 diabetes incidence in patients <15 yr. Alternatively, it may reflect an earlier age of onset without change in incidence over all ages, so that greater numbers of people are being diagnosed with type 1 diabetes in adolescence rather than in young adulthood. This would be consistent with the ‘accelerator hypothesis’, which suggests that an increasing rate of obesity is a primary driver for an earlier age of diabetes onset [6]. Studies have shown an association between higher BMI and younger age at diagnosis [9], [10], [11], indicating greater adiposity in childhood may hasten the onset of diabetes mellitus. The ‘accelerator hypothesis’ predicts an early onset rather than increased risk [11], and a Swedish study examining type 1 diabetes incidence on a nation-wide cohort 0–34 yr showed a shift in age of onset towards younger ages, rather than an increase in incidence per se across the whole population [20]. Although we cannot rule out a similar phenomenon in Auckland, we did not observe an increase in BMI SDS among children recently diagnosed with type 1 diabetes, or an association between BMI SDS and age at diagnosis. In fact, we observed an actual increase in age at diagnosis which is inconsistent with the ‘accelerator hypothesis’. Thus, our data suggest a true increase in the incidence of type 1 diabetes in the Auckland region, and not changes driven by increasing adiposity.

This study shows app usage is relatively low among people with diabetes, while 60.2% of HPs have recommended an app to patients. There is, however, interest amongst people with diabetes and HPs to use diabetes apps, with strong interest in an insulin dose calculator. Apps with this feature have the potential to improve diabetes control. However, the critical problem of app safety remains a barrier to the prescription and use of insulin dose calculators. Further work is needed to ensure apps are safe and provided in a regulated environment. An app assessment process would provide HPs with confidence in the apps they recommend and would ultimately ensure app quality and safety for app users. At present, however, app users and HPs must remain cautious with diabetes apps, especially those in the insulin dose calculator category.
The incidence of type 1 diabetes mellitus has been increasing worldwide [1], [2], [3], and it appears to have been particularly pronounced among children <5 years of age (yr) [3], [4], [5]. This increase has been suggested to be associated with the ‘accelerator hypothesis’ [6]. Although this hypothesis is not universally accepted [7], it predicts that higher BMI is associated with younger age at type 1 diabetes diagnosis [8], which has been demonstrated in some studies [9], [10], [11].
A total of 793 individuals were referred to the study and assessed for eligibility between June 2015 and November 2016. Of these, 366 were randomised to the intervention and control groups (n=183 each; fig 1). The final nine month follow-up assessments were completed in August 2017, with loss to follow-up (that is, no follow-up data on any outcome) low in both groups (overall 7/366=2%). A total of 12 participants (six per group) were excluded from the primary outcome analysis because of no follow-up HbA1c results after randomisation. Baseline characteristics of participants are presented in table 1, and no adverse events were recorded from the study or protocol deviations.
Diabetes is a metabolic disorder, which is accompanied by high blood glucose levels. It is a result of improper functioning of the pancreas, which secretes the insulin hormone. Lack of insulin, result in ketoacidosis. Makhana or Fox nut is a sweet and sour seed, which is also known as Euryale ferox. These seeds contain starch and ten percent of protein. There is no supporting literature for its positive association with diabetes. Therapeutic effects of fox nut involve its strengthening of kidney. It also helps to relieve the dampness, associated with leucorrhoea. It also regulates hypertension or high blood pressure. It is also beneficial for individuals with impotence and arthritis. Fox nuts are effective for individuals with high risk of premature ageing. It is also known as gorgon nut, is also helpful.
Owing to time restrictions, longer term follow-up of participants was not feasible within the current study, although it is hoped that a two year follow-up of the present study’s participants is possible. The significant group difference seen at three months, dropping slightly at six months, but reaching significance again at nine months, could be an indication of sustained change. Another limitation of the study design was that secondary outcome assessors were not blinded to treatment allocation, which could have introduced bias in follow-up data collection of secondary variables.
The message delivery was managed by our content management system, with messages sent and received through a gateway company to allow for participants to be registered with any mobile network. Sending and receiving messages was free for participants. The system maintained logs of all outgoing and incoming messages. Further details of the intervention can be seen in the published pilot study,28 and protocol.30
One of the most important aspects of diabetes management is to maintain a healthy body weight. Being overweight not only increases your risk of heart disease, stroke and some cancers, it also makes your diabetes harder to manage. Small changes in your diet such as reducing your portion sizes and swapping to low-fat dairy products can help you to achieve a healthy body weight and manage your diabetes.
Diabetes mellitus (DM) requires tight control of blood glucose to minimize complications and mortality [1,2]. However, many people with DM have suboptimal glycemic control [3,4]. Use of mobile phone apps in diabetes management has been shown to modestly improve glycemic control [5-10]. Despite this promise, health apps remain largely unregulated, and diabetes apps have not always had safety approval [11] or incorporated evidence-based guidelines [12,13].

Stutt's Diabetes Depot carries all the well-known brands of insulin pump supplies, including Accu-check infusion sets, Deltec Cozmo insulin cartridges/reservoirs, Animas infusion sets, Lantus Solostar Pens, Medtronic MiniMed Paradigm infusion sets, pen needle tips, Lifesource blood pressure monitors and ErecAid vacuum devices for erectile dysfunction.
Eligible participants were randomised to either an intervention or control group in a 1:1 ratio. Randomisation was stratified by health district category (high urban or high rural/remote), diabetes type (1 or 2), and ethnicity (Māori and Pacific, or non-Māori/non-Pacific). The randomisation sequence was generated by computer programme using variable block sizes of two or four, and overseen by the study statistician. Following participant consent and completion of the baseline interview, the research assistant then randomised the participant to intervention or control, using the REDCap randomisation module. The REDCap randomisation module ensured that treatment allocation was concealed until the point of randomisation. Due to the nature of the intervention, participants were aware of their treatment allocation. Research assistants conducting the phone interviews were also aware of the treatment allocation. However, the objective primary outcome was measured by blinded assessors throughout the study period.
This study found that a tailored, theoretically based, SMS based, diabetes self management support programme led to modest improvements in glycaemic control. The effects of intervention were also seen in four of 21 secondary outcomes, including foot care behaviour and ratings of diabetes support. The programme showed a high level of acceptability with the overwhelming majority of participants finding the intervention useful and willing to recommend it to others.
Constipation Cancer Athletic Injuries Mental Health Urgent Care Injuries Pregnancy Injuries Depression Aches Asthma Eating Disorders Fevers Acne Colds Skin Lesions Stds Alcoholism Chest Pain Sore Throats Astigmatism Altitude Sickness Hivaids Diabetes Blood Pressure Chronic Pain Infections Strains Obesity Accidents Endometriosis Moles Abscesses More Less
×