Mobile phone ownership rates are increasing. Similar to trends seen in the United States and Canada, where mobile phone ownership is 72% and 67%, respectively [20], 70% of New Zealanders own a mobile phone, making diabetes apps potentially available to most people [21]. Limited research exists into the use of diabetes apps in New Zealand. However with increasing rates of both diabetes prevalence and mobile phone ownership, access to safe apps is essential for both HPs as potential app prescribers and patients as app users [21,22]. In Scotland, a survey of people with diabetes found high mobile phone ownership (67%) with over half reporting an interest in using apps for self-management of diabetes, but app usage in only 7% of responders [23]. The objectives of this study were (1) To establish whether people with diabetes use apps to assist with diabetes self-management and which features are useful or desirable, and (2) To establish whether HPs treating people with diabetes recommend diabetes apps, which features were thought to be useful, and which features were they confident to recommend.
The SMS4BG (self management support for blood glucose) intervention was developed to address the need for innovative solutions to support self management in adults with poorly controlled diabetes.28 The individually tailored intervention provides information and support designed to motivate a person to engage in the behaviours required to manage their diabetes effectively for long term health improvement. The development of SMS4BG followed the mHealth Development and Evaluation Framework29 (including extensive formative work and end user engagement to ensure that it met the needs of the population it was designed to reach) is evidence based and theoretically grounded. A previous pilot study found SMS4BG to be acceptable and perceived it as useful.28 This study aimed to determine the effectiveness of the mHealth diabetes self management support programme—SMS4BG in adults with poorly controlled type 1 or type 2 diabetes, in addition to their usual diabetes care.
Along with a long list of other complications, gum disease can result from diabetes that is not properly controlled. The two main forms of gum disease are gingivitis and periodontitis. With gingivitis, the gums become red and swollen and may easily bleed. If not treated, this milder form of gum disease can become full-blown periodontitis, which is where the gums pull away from the teeth and infection takes a firm hold, leading to bone, tissue and tooth loss.

The incidence of type 1 diabetes was higher in New Zealand Europeans than other ethnic groups throughout the study period (Figure 2, p<0.0001). There was little difference in incidence among non-European ethnic groups. The annual incidences (per 100,000) by 2009 were: Europeans 32.5 (95% CI 23.8–43.3), Non-Europeans 14.4 (95% CI 9.2–21.4), Maori 13.9 (95% CI 5.2–29.7), Pacific Islanders 15.4 (95% CI 7.3–28.5), and Other 13.5 (95% CI 5.8–26.8). The rate of increase in incidence over the study period was very similar across all ethnicities, as illustrated by the slopes in Figure 2. However, while the average increase in incidence was higher for Europeans than Non-Europeans in children of all age groups (Table 1), the increase was proportionally lower in Europeans (2-fold) than Non-Europeans (3-fold) due to a lower baseline incidence in the latter group (Figure 2). Nonetheless, in both ethnic groups type 1 diabetes incidence in children 10–14 yr increased at a higher rate than in the youngest 0–4 yr group, with a >2-fold difference observed among both Europeans and Non-Europeans (Table 1). Age at diagnosis across the study period was similar in both ethnic groups (p = 0.47).
However, there are concerns about the appropriateness and safety of apps for diabetes self-management [5,11-13,15]. In 2013 only 1 of 600 diabetes apps reviewed in the USA had received FDA clearance [11]. Similarly a review, specifically of insulin dose calculator apps, determined that only one of 46 calculators was clinically safe. The most common issue was that calculators accepted implausible values for blood glucose readings (eg, negative values), yet would still provide an advised insulin dose [15]. HPs are also concerned about app safety [19] and are advised to take care when advising apps to patients [15]. In the United Kingdom, The Royal College of Physicians Health Informatics Unit (London) has developed a checklist for assessing app quality [19]. However, the multitude of factors HPs must consider while recommending apps, including patient familiarity with technology, app features, ease of use, and FDA approval [19] may be burdensome and not practical in day to day clinical care.
The good news is that there are things you can do to prevent these diabetes-related problems, no matter your age. Taking action now will help with your later years, so you can live a healthy life and see your grandchildren grow into beautiful and healthy men and women. And, it’s the perfect time to think about this because National Grandparents Day is on Sunday.
Funding: The development of SMS4BG was funded by Waitemata District Health Board. The randomised controlled trial was funded by the Health Research Council of New Zealand in partnership with the Waitemata District Health Board and Auckland District Health Board (through the Research Partnerships for New Zealand Health Delivery initiative), and the New Zealand Ministry of Health. The funders were not involved in any way in the preparation of the manuscript or analysis of the study results. No payment has been received for writing this publication.
There was a steady increase in the annual number of newly diagnosed cases of type 1 diabetes in children <15 yr (r2 = 0.80; p<0.0001) of 2.0 additional cases per year, from 23 in 1990/1 to 60 cases per year in 2008/9. There was no appreciable difference in the rate of increase between males and females (p = 0.08), but the rise in number of new type 1 diabetes cases did not occur evenly among age groups (p = 0.0001). The yearly increase among older children (10–14 yr) was 3-fold greater than in the youngest (0–4 yr) group (0–4 yr = +0.4/yr; 5–9 yr = +0.8/yr; 10–14 yr = +1.2/yr). Over the 20-year period, new cases were moderately more frequent in winter and less frequent in spring (29.4% and 22.0%, respectively; test of equal proportions across all four seasons: p = 0.02).
The look of the Dario appealed straight away to me. Small and compact. Easy for me to carry with my phone which goes everywhere with me. Love the fantastic app on my phone. Clear, informative and easy to use. Love it! I can look back at previous readings to see any patterns. Sara and Assaf have been brilliant at helping out with any issues I have come across, which I thank them hugely for. The Dario Lounge is a great community for all users, who all share advice.
Patients were involved in all stages of the study, including the initial conceptualisation and formative work leading to the development of SMS4BG (for more information, see the development paper28). Patient feedback informed the intervention modality, purpose, and structure, and patients reviewed intervention content before it was finalised. Patient feedback on the acceptability of SMS4BG through the pilot study28 led to improvements to the intervention including additional modules, the option for feedback graphs to be posted, additional tailoring variables, and a longer duration of intervention. Patient feedback also informed the design of this trial—specifically its duration, the inclusion criteria, and recruitment methods. Additionally, patients contributed to workshops of key stakeholders held to discuss interpretation, dissemination of the findings, and potential implementation. We have thanked all participants for their involvement and they will be given access to all published results when these are made publicly available.

Blood glucose tracking is the most common feature of diabetes apps [5,14], with other features including record of medications, dietary advice, and tracking, such as carbohydrate content calculation, and weight management support [5,11,12,14-16]. Additionally some apps recommend insulin dosing based on users inputs of glucose levels and estimated meal carbohydrate. Meta-analysis of 22 trials including 1657 patients in which use of mobile phone apps supporting diabetes management was compared to usual care or other Web-based supports showed that app use led to a mean reduction in HbA1c of 6mmol/mol that is 0.5% [9]. This compares favorably with the glucose lowering of lifestyle change, namely diet [17] and oral diabetes medication [18].


Blood glucose tracking is the most common feature of diabetes apps [5,14], with other features including record of medications, dietary advice, and tracking, such as carbohydrate content calculation, and weight management support [5,11,12,14-16]. Additionally some apps recommend insulin dosing based on users inputs of glucose levels and estimated meal carbohydrate. Meta-analysis of 22 trials including 1657 patients in which use of mobile phone apps supporting diabetes management was compared to usual care or other Web-based supports showed that app use led to a mean reduction in HbA1c of 6mmol/mol that is 0.5% [9]. This compares favorably with the glucose lowering of lifestyle change, namely diet [17] and oral diabetes medication [18].
Increase your physical activity. Exercise is a very important tool to help lower your blood glucose. Prior to starting any exercise program, you will need to consult with your doctor. Make exercise routine with activities you enjoy. In addition to helping manage your blood glucose, exercise helps lower blood pressure and improves balance, flexibility and muscle strength. Exercise may even help to reduce anxiety and depression. Go out and play!
A large patient sample size was obtained by contacting all patients seen in the last 12 months with an email address. The risk of overrepresentation by more technology-literate responders through recruitment via email was minimized by also recruiting via telephone and by providing paper surveys at the HPs’ conference. The demographic and clinical data of responders and non-responders were compared, and most variables showed no difference. Responders were actually older than non-responders and had better glycemic control. This study focused on the beliefs and opinions of people with diabetes (potential app users) and HPs (potential app prescribers) rather than simply describing apps for diabetes . It is one of the first papers to describe app use in people with diabetes in New Zealand.
As published in the protocol, a sample size of 500 participants (250 per arm) was estimated to provide 90% power at the 5% significance level to detect a clinically meaningful group difference of 0.5% (5.5 mmol/mol) in HbA1c at nine months, assuming a standard deviation of 1.7% (18.6 mmol/mol). Despite extensive efforts, recruitment for the study was slower than expected, and with the limited overall study period available, a post hoc power calculation was conducted in September 2016. A revised sample size of 366 participants (183 per arm) was targeted, which would provide 80% power to detect the same effect size under the same assumptions.
As published in the protocol, a sample size of 500 participants (250 per arm) was estimated to provide 90% power at the 5% significance level to detect a clinically meaningful group difference of 0.5% (5.5 mmol/mol) in HbA1c at nine months, assuming a standard deviation of 1.7% (18.6 mmol/mol). Despite extensive efforts, recruitment for the study was slower than expected, and with the limited overall study period available, a post hoc power calculation was conducted in September 2016. A revised sample size of 366 participants (183 per arm) was targeted, which would provide 80% power to detect the same effect size under the same assumptions.
The features most frequently used by current app users were blood glucose diaries (87%, 32/37), followed by carbohydrate/meal diaries (38%, 14/37) with 22% (8/37) reporting insulin dose calculation devices to be useful (Table 3). Table 3 demonstrates the features app users found useful in their current apps. App users reported the most desired feature for future use in an app was an insulin dose calculator (46%, 17/37; Table 4). Table 5 shows that non-app users reported insulin dose calculators to be the third most desired feature (54.6%, n=83/152). Blood glucose diaries were the most desired app feature amongst non-app users (64.4%, 98/152; Table 5). Non app users with T1DM were more likely to desire an insulin dose calculation device, than non-app users with T2DM, P=.01).

The incidence of type 1 diabetes mellitus has been increasing worldwide [1], [2], [3], and it appears to have been particularly pronounced among children <5 years of age (yr) [3], [4], [5]. This increase has been suggested to be associated with the ‘accelerator hypothesis’ [6]. Although this hypothesis is not universally accepted [7], it predicts that higher BMI is associated with younger age at type 1 diabetes diagnosis [8], which has been demonstrated in some studies [9], [10], [11].
×