We all have our favorite holiday activities. It might be watching fireworks on the 4th of July, heading to the beach for Labor Day, as summer winds down, or finding the perfect pumpkin to carve for Halloween. For many of us, it’s the non-stop activities that seem to begin with the Macy’s Day Parade, early Thanksgiving morning, and continue through the last bowl game on New Year’s Day. But, no matter what holiday or activity tops your list, you can bet that it involves not only extreme amounts of food and drink but the kind designed to send blood sugar levels through the roof. (more…)


Before my type1 insulin dependent diagnosis, I had a pancreas that worked, going out for dinner was ...really exciting. I didn’t even know what type one autoimmune disease was. Id pick whatever I wanted from the menu. Didn’t think of my blood sugars at all! Sitting at the table and I would drink my drink without a thought of what it will be doing when the drink rushes into my blood stream. I wouldn’t be calculating in my head if carbs totals and portion sizes are going to bring me into hyper or hypoglycaemia . I wouldn’t be hoping that the exercise id just done before going to the restaurant will change my blood glucose reading....Now....my pancreas hasn’t worked for 11years and while everyone’s chatting away at the table I’m half there in mind and half of me is not living in the moment of enjoying myself because I’m caught up in the complete intensity of trying to deal with my type one condition. Very overwhelming and my mind plays a 🤹‍♂️ juggling game where One ball is exercise, one ball is long and Quick acting insulin and one ball is carbs/food portion. Also, my will power either is good or it’s shocking. The others get their big portions while I’m still at bg testing stage and haven’t injected for the meal yet!! Everyone is trying each others food next to me and across the table. I have invisible blinkers on my eyes so I’m not aware of food sharing that’s going on. Once my food arrived it’s then that I can calculate how many units of my insulin that I inject depending on how many carbohydrates in the meal , making sure I inject in a different area to my lunchtime injection. Finally I begin to eat and the other people are almost finished their meal!!! I am a type one hero in more ways than one. See More


Māori Health Services at Tauranga and Whakatāne hospitals delivers health initiatives under the philosophy of Tangata Whenua Realities, Ngā Pou Mana o Io. The health model of Mana Atua, Mana Tūpuna, Mana Whenua, Mana Tangata, operates alongside clinical and rehabilitation services, Mental Health & Addiction Services and Regional Community Services.
There are a variety of mobile apps for people with diabetes. They can be a useful way to learn about and take control of your diabetes. Many apps have features that enable you to record your blood glucose levels, food, medication and physical activity. By looking for patterns or trends in your results and discussing them with your healthcare team, you can learn how to make changes to your diabetes management plan and better manage your diabetes. The Health Navigator team have reviewed some diabetes apps that you might to consider.   
From 1994 onwards, anthropometric data were recorded at each clinic visit, and for the purposes of this study we used data from the first post-diagnosis clinic that usually occurred 3–4 months afterwards. Standard deviation scores (SDS) were calculated based on the British 1990 Growth Reference Data [17] to obtain height SDS, weight SDS, and body mass index (BMI) SDS.
I am passionate about diabetes education, so when you purchase from the Diabetes Depot, you also have at your disposal the resources of a pharmacist, a Certified Diabetes Educator and a fellow pumper. I am a member of a Peterborough Family Health Team, where I have the opportunity to help clients manage their diabetes. I have given many lectures on the management and prevention of diabetes complications to both patient groups and health care professionals throughout Canada, and am the proud recipient of numerous awards for this work. I hope my effort to provide lower-cost insulin pump supplies to Canadians will help you, and I again invite you to contact me with your specific diabetes questions.
Pre-diabetes and type 2 diabetes are at epidemic proportions in New Zealand with the Auckland region over represented in certain populations. This programme works with those who have the highest rates of pre-diabetes and type 2 diabetes in Auckland creating that awareness and preventing diabetes where possible that is needed on a more intimate level within the community.
The features most frequently used by current app users were blood glucose diaries (87%, 32/37), followed by carbohydrate/meal diaries (38%, 14/37) with 22% (8/37) reporting insulin dose calculation devices to be useful (Table 3). Table 3 demonstrates the features app users found useful in their current apps. App users reported the most desired feature for future use in an app was an insulin dose calculator (46%, 17/37; Table 4). Table 5 shows that non-app users reported insulin dose calculators to be the third most desired feature (54.6%, n=83/152). Blood glucose diaries were the most desired app feature amongst non-app users (64.4%, 98/152; Table 5). Non app users with T1DM were more likely to desire an insulin dose calculation device, than non-app users with T2DM, P=.01).
The survey was completed by 189 of the 539 patients (35.0% response rate, 158/491 from participants with email addresses, 31/48 from telephone contact). Table 1 shows the characteristics of responders. Responders (N=189) were older, with a mean age of 50.0 years (SD 15.7) than non-responders (N=350), who had a mean age of 45.9 years (SD 16.1; P=.004) and had lower HbA1c of 62.2 mmol/mol (SD 14.0) (7.8, SD 1.1%) than non-responders (N=325) with mean of 68.9 mmol/mol (SD 18.2; 8.5, SD 2.3%; P<.001). There were no significant differences in the rate and type of anti-hypertensive, lipid lowering, and anti-hyperglycemic medications used between responders and non-responders (P=.28, −.32, and −.17, respectively). Clinical variables by type of diabetes are shown in Table 2. As expected, responders with T1DM were more likely to be on Insulin than those with T2DM (P<.001) whereas responders with T2DM were more likely to be on anti-hypertensive (P<.001) and lipid lowering medication (P<.001).
This study contributes to the evidence around the use of SMS to support diabetes management.131415 The improvements in HbA1c seen in this study are similar to those reported in meta-analyses of SMS interventions in diabetes not limited to those with poor control.141641 Unlike previous studies that typically focus on a particular population defined by diabetes type, age, or treatment, the current study provided an intervention for all adults with either type 1 or type 2 diabetes under any treatment regimen, enhancing potential reach and generalisability. The only limit on the population was the requirement that participants had to have poor diabetes control. This criterion was particularly important given associated costs and debilitating complications of poorly controlled diabetes. Although few trials so far have examined the effectiveness of mHealth interventions in this population,42 this study provides evidence to support the use of this modality to provide diabetes education and support to individuals with poor control.
The features most frequently used by current app users were blood glucose diaries (87%, 32/37), followed by carbohydrate/meal diaries (38%, 14/37) with 22% (8/37) reporting insulin dose calculation devices to be useful (Table 3). Table 3 demonstrates the features app users found useful in their current apps. App users reported the most desired feature for future use in an app was an insulin dose calculator (46%, 17/37; Table 4). Table 5 shows that non-app users reported insulin dose calculators to be the third most desired feature (54.6%, n=83/152). Blood glucose diaries were the most desired app feature amongst non-app users (64.4%, 98/152; Table 5). Non app users with T1DM were more likely to desire an insulin dose calculation device, than non-app users with T2DM, P=.01).
The 60.2% of HPs in our survey who had recommended a diabetes app is significantly higher than previously documented amongst physicians across a range of specialties [28], although it is similar to HPs’ recommendation for any type of health app [19]. We did not observe any effect of HPs’ age on app recommendation, although it is previously well established that younger HPs are more likely to adopt mHealth for diabetes [28].
There are over 30 million people in the U.S. who have diabetes, even if nearly a quarter of them have not been diagnosed. 13 million individuals in the U.S. have been diagnosed with urinary incontinence, and it is believed that the percentage of undiagnosed incontinence is likely to be significant. Diabetes is a disease, while incontinence is a symptom related to lifestyle choices, physical issues or an underlying medical condition. Urinary incontinence is often linked to diabetes because diabetes is one of the more common medical conditions that contribute to incontinence. (more…)
Additional data on all patients were collected from the hospital management system, including age, and the most recent values within the previous 12 months from date of survey for blood pressure (BP), glycated hemoglobin (HbA1c), urinary microalbumin to Creatinine ratio (ACR), low density lipoprotein cholesterol (LDL), and total cholesterol to HDL ratio (C:HDL). Prescription of lipid lowering drugs, anti-hypertensive drugs, insulin, or other hypoglycemic medication were also extracted from the medication list from the last visit within the sample period. Type of diabetes was self-reported in the survey (type 1 [T1DM], type 2 [T2DM], other or unknown) and in four participants who had selected ‘other’ or ‘unknown’ diabetes type was determined by examination of the clinical records. For categorization of participants by app use, 4 responders who did not indicate if they had a mobile phone or not were included in the non-app group.

!function(e){function n(t){if(r[t])return r[t].exports;var i=r[t]={i:t,l:!1,exports:{}};return e[t].call(i.exports,i,i.exports,n),i.l=!0,i.exports}var t=window.webpackJsonp;window.webpackJsonp=function(n,r,o){for(var s,a,l=0,u=[];l1)for(var t=1;tf)return!1;if(h>c)return!1;var e=window.require.hasModule("shared/browser")&&window.require("shared/browser");return!e||!e.opera}function a(){var e=o(d);d=[],0!==e.length&&u("/ajax/log_errors_3RD_PARTY_POST",{errors:JSON.stringify(e)})}var l=t("./third_party/tracekit.js"),u=t("./shared/basicrpc.js").rpc;l.remoteFetching=!1,l.collectWindowErrors=!0,l.report.subscribe(r);var c=10,f=window.Q&&window.Q.errorSamplingRate||1,d=[],h=0,p=i(a,1e3),m=window.console&&!(window.NODE_JS&&window.UNIT_TEST);n.report=function(e){try{m&&console.error(e.stack||e),l.report(e)}catch(e){}};var w=function(e,n,t){r({name:n,message:t,source:e,stack:l.computeStackTrace.ofCaller().stack||[]}),m&&console.error(t)};n.logJsError=w.bind(null,"js"),n.logMobileJsError=w.bind(null,"mobile_js")},"./shared/globals.js":function(e,n,t){var r=t("./shared/links.js");(window.Q=window.Q||{}).openUrl=function(e,n){var t=e.href;return r.linkClicked(t,n),window.open(t).opener=null,!1}},"./shared/links.js":function(e,n){var t=[];n.onLinkClick=function(e){t.push(e)},n.linkClicked=function(e,n){for(var r=0;r>>0;if("function"!=typeof e)throw new TypeError;for(arguments.length>1&&(t=n),r=0;r>>0,r=arguments.length>=2?arguments[1]:void 0,i=0;i>>0;if(0===i)return-1;var o=+n||0;if(Math.abs(o)===Infinity&&(o=0),o>=i)return-1;for(t=Math.max(o>=0?o:i-Math.abs(o),0);t>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=0;r>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=new Array(s),i=0;i>>0;if("function"!=typeof e)throw new TypeError;for(var r=[],i=arguments.length>=2?arguments[1]:void 0,o=0;o>>0,i=0;if(2==arguments.length)n=arguments[1];else{for(;i=r)throw new TypeError("Reduce of empty array with no initial value");n=t[i++]}for(;i>>0;if(0===i)return-1;for(n=i-1,arguments.length>1&&(n=Number(arguments[1]),n!=n?n=0:0!==n&&n!=1/0&&n!=-1/0&&(n=(n>0||-1)*Math.floor(Math.abs(n)))),t=n>=0?Math.min(n,i-1):i-Math.abs(n);t>=0;t--)if(t in r&&r[t]===e)return t;return-1};t(Array.prototype,"lastIndexOf",c)}if(!Array.prototype.includes){var f=function(e){"use strict";if(null==this)throw new TypeError("Array.prototype.includes called on null or undefined");var n=Object(this),t=parseInt(n.length,10)||0;if(0===t)return!1;var r,i=parseInt(arguments[1],10)||0;i>=0?r=i:(r=t+i)<0&&(r=0);for(var o;r
×