The main effect of the intervention on secondary outcomes are presented in table 4. No significant differences were observed between the two groups for self efficacy (SEDM). A significant improvement in foot care behaviour was seen in the intervention group compared with the control group (adjusted mean difference 0.85 (95% confidence interval 0.40 to 1.29), P<0.001) but no significant group differences were observed for diet (general or specific), exercise, blood glucose testing, and smoking behaviours (SDSCA). No significant group differences were observed for diabetes distress (DDS2).
Additional data on all patients were collected from the hospital management system, including age, and the most recent values within the previous 12 months from date of survey for blood pressure (BP), glycated hemoglobin (HbA1c), urinary microalbumin to Creatinine ratio (ACR), low density lipoprotein cholesterol (LDL), and total cholesterol to HDL ratio (C:HDL). Prescription of lipid lowering drugs, anti-hypertensive drugs, insulin, or other hypoglycemic medication were also extracted from the medication list from the last visit within the sample period. Type of diabetes was self-reported in the survey (type 1 [T1DM], type 2 [T2DM], other or unknown) and in four participants who had selected ‘other’ or ‘unknown’ diabetes type was determined by examination of the clinical records. For categorization of participants by app use, 4 responders who did not indicate if they had a mobile phone or not were included in the non-app group.
Wednesday Walks are a joint venture between Korowhai Aroha Health Centre and Diabetes NZ Rotorua Branch. Join Mary every Wednesday morning for some gentle exercise in good company. The idea is to have fun and encourage each other to exercise. Our Wednesday Walks set out from the Waka on the Lakefront at 9am sharp. The walk lasts for up to an hour. You can go at your own pace and there is no minimum level of fitness required. Wear a hat and bring walking shoes, water & extra carbohydrate foods if you are prone to low blood sugar levels. Bring your partner, friend, kids or mokopuna.
Diabetes mellitus (DM) requires tight control of blood glucose to minimize complications and mortality [1,2]. However, many people with DM have suboptimal glycemic control [3,4]. Use of mobile phone apps in diabetes management has been shown to modestly improve glycemic control [5-10]. Despite this promise, health apps remain largely unregulated, and diabetes apps have not always had safety approval [11] or incorporated evidence-based guidelines [12,13].
Owing to individual tailoring, participants in the intervention group received varying numbers of messages. Half the participants (92/183) received messages for three months, an additional 18% (33/183) chose to continue the messages for six months, and the remaining 32% (58/183) chose to continue the messages to the maximum nine months. Only three participants chose to stop their messages early. A total number of 76 523 messages were sent by the system to participants (median number of messages per participant 242 (interquartile range 122-511; range 14-2050)), and 16 251 messages of blood glucose results were sent into the system by participants receiving the reminders (68 (1-169; 0-917)).
The message delivery was managed by our content management system, with messages sent and received through a gateway company to allow for participants to be registered with any mobile network. Sending and receiving messages was free for participants. The system maintained logs of all outgoing and incoming messages. Further details of the intervention can be seen in the published pilot study,28 and protocol.30
We’ll also teach you what to do with everything you’re learning. Using the latest research and stories from people with diabetes, we’ll help you make small changes through short videos and simple action items. Soon, you’ll be seeing results, feeling better and having more energy. Many people with diabetes say that they’re healthier NOW than they were before they were diagnosed– you can be one of them!

Another goal of this blog is to give you a behind-the-scenes look at what the Association does on a daily basis to fulfill its mission: To prevent and cure diabetes and improve the lives of all people living with diabetes.  Our staff’s dedication – combined the stories that provide them with inspiration through the day – is a critical part of the Stop Diabetes movement.


Lack of insulin results in ketoacidosis. Ketones are acids that develop in the blood and appear in the urine. Ketones could poison the body and this is a warning sign that the diabetes is out of control. Symptoms of diabetes involve nausea, shortness of breath, vomiting, fruity flavor in breath, dry mouth, and high glucose levels. Complications associated with diabetes are retinopathy, neuropathy, nephropathy, heart disease and gangrene. Hypoglycemia or low blood sugar is yet another problem associated with diabetes mellitus. Symptoms include hunger, tremor, seizure, sweating, dizziness, jerks, tingling sensation and pale skin color. Improper management of diabetes causes low blood sugar, which in turn causes hypoglycemic coma. It is a life threatening condition.
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
To assess whether changes in incidence were more marked in certain age groups (as observed overseas [3], [4]), patients were also categorised into three bands according to age at diagnosis: 0–4 yr (children less than 5 yr), 5–9 yr (equal or greater than 5 yr but less than 10 yr), and 10–14 yr (equal or greater than 10 yr but less than 15 yr). These age bands also match national census classifications. The incidence of type 1 diabetes was assessed as the number of new diagnoses per 100,000 age-matched inhabitants on a given year, based on the 5-yearly national census data from Statistics New Zealand [12] and interpolated estimates of the population for the intervening years. Incidence was modelled using the Poisson distribution. Point estimates were calculated with exact Poisson confidence limits, and change in incidence over time were analysed using Poisson regression. Changes in patient numbers, age at diagnosis, and anthropometric data over time were assessed by linear regression. Poisson modelling was undertaken using StatsDirect v2.7.8 (StatsDirect Ltd, UK); other analyses were undertaken using JMP v. 5.1 (SAS Inc, USA).
{"id":"graph-580005c2290f5","type":"c3","legend":["DHB population","National population"],"rows":[["00\u201309","13.6","13.3"],["10\u201319","13.2","13.0"],["20\u201329","10.7","14.2"],["30\u201339","10.3","12.3"],["40\u201349","12.6","13.2"],["50\u201359","13.5","13.1"],["60\u201369","12.4","10.6"],["70\u201379","8.7","6.6"],["80\u201389","4.1","3.0"],["90+","0.9","0.6"]],"rows_c3":[["DHB population","National population"],["13.6","13.3"],["13.2","13.0"],["10.7","14.2"],["10.3","12.3"],["12.6","13.2"],["13.5","13.1"],["12.4","10.6"],["8.7","6.6"],["4.1","3.0"],["0.9","0.6"]],"categories":["00\u201309","10\u201319","20\u201329","30\u201339","40\u201349","50\u201359","60\u201369","70\u201379","80\u201389","90+"],"attributes":{"class":"d3graph","data-graph-desc":"Graph showing the percentage of population in each age bracket, within the DHB and nationally. ","data-graph-render":"bar","data-graph-title":"Population by age, 2016\/17","data-graph-type":"c3","data-graph-xaxis-label":"Age group (years)","data-graph-yaxis-label":"Population (%)","data-graph-yaxis-suffix":"%","id":"580005c2290f5"}}
Type 2 Diabetes is one of the major consequences of the obesity epidemic and according to Diabetes New Zealand is New Zealand’s fastest-growing health crisis. In terms of diabetes diagnosis, Type 2 currently accounts for around 90% of all cases. Also of concern to health professionals is that there are large numbers of people with silent, undiagnosed Type 2 Diabetes which may be damaging their bodies. An estimated 258,000 New Zealanders are estimated to have some form of diabetes, with than number doubling over the past decade.
Statistical analyses were performed by SAS version 9.4 (SAS Institute). All statistical tests were two sided at a 5% significance level. Analyses were performed on the principle of intention to treat, including all randomised participants who provided at least one valid measure on the primary outcome after randomisation. Demographics and baseline characteristics of all participants were first summarised by treatment group with descriptive statistics. No formal statistical tests were conducted at baseline, because any baseline imbalance observed between two groups could have occurred by chance with randomisation.
Having a healthy lifestyle includes daily physical activity which can prevent or delay Type 2 Diabetes. There are plenty of organised activities you can take part in such as Walk to Work, but you can also do your own thing and get moving with family and friends in any way you like. It’s most important to remember that activity is for life, not just one day. Regular physical activity could include walking, riding a bike, dancing or swimming.
-Keep your cholesterol levels in normal range. The liver makes cholesterol and it is also found in the foods we eat such as eggs, meats and dairy products. High cholesterol levels can clog your arteries and put you at risk of developing heart disease and stroke. If you have high cholesterol, you can help lower it by losing weight, exercising and eating a healthful diet.
Contributors: RW obtained funding for this trial. All coauthors had input into the study protocol. RD, RW, RMu, and MS contributed to the development of the intervention content. RD managed the day-to-day running of the trial and delivery of the intervention. RD and RW collected the data. YJ and RD did the data analyses. All coauthors were involved in the interpretation of the results. RD wrote the article with input from all coauthors. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version of this manuscript. RD is guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.
New Zealand Europeans had a significantly higher incidence rate than Non-Europeans, which is consistent with other studies [21], [22]. There was a marked decrease in the proportion of Europeans in Auckland over the study period, so that the increase in type 1 diabetes incidence was not due to a shift in ethnic distribution. Furthermore, the incidence has been increasing in both Europeans and non-Europeans. A number of studies have shown that immigrant groups display higher rates of type 1 diabetes than in their countries of origin, particularly those that move into societies with a westernised lifestyle [23], [24]. For example, although type 1 diabetes in Polynesia is extremely rare, an abrupt increase in incidence occurs in Pacific Island peoples who migrate to New Zealand [25]. Our study provides evidence that the factors leading to an increase in incidence are operating across all ethnicities. Indeed, the incidence of type 1 diabetes has been remarkably similar over time for the indigenous Maori and the largely newly immigrant Pacific Island and Other ethnic groups.
Diabetes Stops Here will provide snap shots of the people who are committed to putting an end to this disease, from inspiring volunteer stories to moving staff experiences to celebrity stories about how to be successful while living with diabetes. The stories, interviews and news will be shared by the blog’s author, a staff member at the American Diabetes Association, who has lived with type 1 diabetes for nearly ten years. 
Diabetes mellitus (DM) requires tight control of blood glucose to minimize complications and mortality [1,2]. However, many people with DM have suboptimal glycemic control [3,4]. Use of mobile phone apps in diabetes management has been shown to modestly improve glycemic control [5-10]. Despite this promise, health apps remain largely unregulated, and diabetes apps have not always had safety approval [11] or incorporated evidence-based guidelines [12,13].
Stutt's Diabetes Depot carries all the well-known brands of insulin pump supplies, including Accu-check infusion sets, Deltec Cozmo insulin cartridges/reservoirs, Animas infusion sets, Lantus Solostar Pens, Medtronic MiniMed Paradigm infusion sets, pen needle tips, Lifesource blood pressure monitors and ErecAid vacuum devices for erectile dysfunction.
This cross-sectional observational study used two surveys (see Multimedia Appendices 1 and 2), one for people with diabetes attending a secondary care diabetes outpatient clinic and the second for HPs (who treat people with diabetes) attending a national diabetes conference. Both surveys were multi-choice format, collected, and managed using REDCap electronic data capture tools. REDCap (Research Electronic Data Capture) is a secure, Web-based app designed to support data capture for research studies [24]. The survey questions were derived from criteria in the Mobile app rating scale [25] to address attitudes and practices of both the people with diabetes and HPs. The list of apps was compiled by searching Apple and Android App stores and included the first consecutive ten diabetes apps. We eliminated any apps not specific to diabetes by reviewing app store descriptions. We reviewed the main features from these apps to develop the list of app features. The patient survey asked responders to select any useful app features from a list. Responders could select more than one useful app feature. The HP survey listed app features and used a scale to assess usefulness of app features (from 1 [not at all useful] to 5 [extremely useful]) and their confidence in recommending apps (from 1 [not at all confident] to 5 [extremely confident]).
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

The {Dario} device has been perfect, I love it. I love that it’s small and discreet enough. I can now test my sugars within 20 seconds, all from the bottom of my iPhone and no one around is none the wiser… I also love that it’s “all in one”. I’ve been using it now for around 4 – 5 months. The app is great at logging and motivation with its % scoring system.
The main effect of the intervention on secondary outcomes are presented in table 4. No significant differences were observed between the two groups for self efficacy (SEDM). A significant improvement in foot care behaviour was seen in the intervention group compared with the control group (adjusted mean difference 0.85 (95% confidence interval 0.40 to 1.29), P<0.001) but no significant group differences were observed for diet (general or specific), exercise, blood glucose testing, and smoking behaviours (SDSCA). No significant group differences were observed for diabetes distress (DDS2).

Funding: The development of SMS4BG was funded by Waitemata District Health Board. The randomised controlled trial was funded by the Health Research Council of New Zealand in partnership with the Waitemata District Health Board and Auckland District Health Board (through the Research Partnerships for New Zealand Health Delivery initiative), and the New Zealand Ministry of Health. The funders were not involved in any way in the preparation of the manuscript or analysis of the study results. No payment has been received for writing this publication.
This study shows the potential of SMS4BG to provide a low cost, scalable solution for increasing the reach of diabetes self management support. It showed that a text messaging programme can increase a patient’s feelings of support without the need for personal contact from a healthcare professional. Half of the intervention group reported sharing the messages with others. Traditional education for diabetes self management is delivered to individual patients, but there is benefit of support from other people being involved.45 This is particularly pertinent to ethnic populations such as Māori groups, in whom family have an important role in supporting diabetes self management.46

Among the intervention participants, 169 (92%) completed questions at follow-up about satisfaction and acceptability of the intervention (table 5). Participants reported high levels of satisfaction with SMS4BG, and all but two participants thought that text messaging was a good way to deliver this type of support. Ten participants reported technical issues while receiving the intervention, most commonly issues replying to the messages (n=4), issues accessing graphs (n=2), and mobile reception issues (n=2).

There was a steady increase in the annual number of newly diagnosed cases of type 1 diabetes in children <15 yr (r2 = 0.80; p<0.0001) of 2.0 additional cases per year, from 23 in 1990/1 to 60 cases per year in 2008/9. There was no appreciable difference in the rate of increase between males and females (p = 0.08), but the rise in number of new type 1 diabetes cases did not occur evenly among age groups (p = 0.0001). The yearly increase among older children (10–14 yr) was 3-fold greater than in the youngest (0–4 yr) group (0–4 yr = +0.4/yr; 5–9 yr = +0.8/yr; 10–14 yr = +1.2/yr). Over the 20-year period, new cases were moderately more frequent in winter and less frequent in spring (29.4% and 22.0%, respectively; test of equal proportions across all four seasons: p = 0.02).
×