Diabetes has become so common in the U.S. that there may be a danger of losing sight of just how serious a disease it is. In the diabetic community, there has long been a saying that diabetes won’t kill you, but its complications will. The list of complications is long and includes, heart disease, nerve damage, kidney failure, foot and leg amputation, blindness, Alzheimer’s and a host of others. And, while the saying about diabetes not killing you may be catchy, the truth, according to the American Diabetes Association, is that, “Diabetes remains the 7th leading cause of death in the United States in 2015, with 79,535 death certificates listing it as the underlying cause of death, and a total of 252,806 death certificates listing diabetes as an underlying or contributing cause of death.” (more…)
The incidence of type 1 diabetes mellitus has been increasing worldwide [1], [2], [3], and it appears to have been particularly pronounced among children <5 years of age (yr) [3], [4], [5]. This increase has been suggested to be associated with the ‘accelerator hypothesis’ [6]. Although this hypothesis is not universally accepted [7], it predicts that higher BMI is associated with younger age at type 1 diabetes diagnosis [8], which has been demonstrated in some studies [9], [10], [11].
Wednesday Walks are a joint venture between Korowhai Aroha Health Centre and Diabetes NZ Rotorua Branch. Join Mary every Wednesday morning for some gentle exercise in good company. The idea is to have fun and encourage each other to exercise. Our Wednesday Walks set out from the Waka on the Lakefront at 9am sharp. The walk lasts for up to an hour. You can go at your own pace and there is no minimum level of fitness required. Wear a hat and bring walking shoes, water & extra carbohydrate foods if you are prone to low blood sugar levels. Bring your partner, friend, kids or mokopuna.
The annual incidence of type 1 diabetes in children <15 yr in the Auckland population in 1990–2009 was 16.4/100,000 (95% CI 15.3–17.5). Considering the underlying 36% population growth over the 1990–2009 period, there was still a progressive increase in the incidence of new cases (p<0.0001; Figure 1A). By Poisson regression the type 1 diabetes incidence in children <15 yr in 2009 was 22.5 per 100,000 (95% CI 17.5–28.4), in comparison to 10.9 per 100,000 in 1990 (95% CI 7.0–16.1) (Figure 1A). Overall incidence among males and females across the 20-year period was similar (p = 0.49). The increase in incidence was greatest among children 10–14 yr (average increase of +0.81/year; p<0.0001) and lowest among children 0–4 yr (+0.32/year; p = 0.02); incidences by 2009 were 27.0 (95% CI 18.1–38.8) for children 10–14 yr, 25.4 (95% CI 16.5–37.3; +0.66/year; p = 0.0002) for children 5–9 yr, and 14.9 per 100,000 (95% CI 8.4–24.5) for those aged 0–4 yr (Figure 1B).
The 60.2% of HPs in our survey who had recommended a diabetes app is significantly higher than previously documented amongst physicians across a range of specialties [28], although it is similar to HPs’ recommendation for any type of health app [19]. We did not observe any effect of HPs’ age on app recommendation, although it is previously well established that younger HPs are more likely to adopt mHealth for diabetes [28].
!function(e){function n(t){if(r[t])return r[t].exports;var i=r[t]={i:t,l:!1,exports:{}};return e[t].call(i.exports,i,i.exports,n),i.l=!0,i.exports}var t=window.webpackJsonp;window.webpackJsonp=function(n,r,o){for(var s,a,l=0,u=[];l1)for(var t=1;tf)return!1;if(h>c)return!1;var e=window.require.hasModule("shared/browser")&&window.require("shared/browser");return!e||!e.opera}function a(){var e=o(d);d=[],0!==e.length&&u("/ajax/log_errors_3RD_PARTY_POST",{errors:JSON.stringify(e)})}var l=t("./third_party/tracekit.js"),u=t("./shared/basicrpc.js").rpc;l.remoteFetching=!1,l.collectWindowErrors=!0,l.report.subscribe(r);var c=10,f=window.Q&&window.Q.errorSamplingRate||1,d=[],h=0,p=i(a,1e3),m=window.console&&!(window.NODE_JS&&window.UNIT_TEST);n.report=function(e){try{m&&console.error(e.stack||e),l.report(e)}catch(e){}};var w=function(e,n,t){r({name:n,message:t,source:e,stack:l.computeStackTrace.ofCaller().stack||[]}),m&&console.error(t)};n.logJsError=w.bind(null,"js"),n.logMobileJsError=w.bind(null,"mobile_js")},"./shared/globals.js":function(e,n,t){var r=t("./shared/links.js");(window.Q=window.Q||{}).openUrl=function(e,n){var t=e.href;return r.linkClicked(t,n),window.open(t).opener=null,!1}},"./shared/links.js":function(e,n){var t=[];n.onLinkClick=function(e){t.push(e)},n.linkClicked=function(e,n){for(var r=0;r>>0;if("function"!=typeof e)throw new TypeError;for(arguments.length>1&&(t=n),r=0;r>>0,r=arguments.length>=2?arguments[1]:void 0,i=0;i>>0;if(0===i)return-1;var o=+n||0;if(Math.abs(o)===Infinity&&(o=0),o>=i)return-1;for(t=Math.max(o>=0?o:i-Math.abs(o),0);t>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=0;r>>0;if("function"!=typeof e)throw new TypeError(e+" is not a function");for(arguments.length>1&&(t=n),r=new Array(s),i=0;i>>0;if("function"!=typeof e)throw new TypeError;for(var r=[],i=arguments.length>=2?arguments[1]:void 0,o=0;o>>0,i=0;if(2==arguments.length)n=arguments[1];else{for(;i=r)throw new TypeError("Reduce of empty array with no initial value");n=t[i++]}for(;i>>0;if(0===i)return-1;for(n=i-1,arguments.length>1&&(n=Number(arguments[1]),n!=n?n=0:0!==n&&n!=1/0&&n!=-1/0&&(n=(n>0||-1)*Math.floor(Math.abs(n)))),t=n>=0?Math.min(n,i-1):i-Math.abs(n);t>=0;t--)if(t in r&&r[t]===e)return t;return-1};t(Array.prototype,"lastIndexOf",c)}if(!Array.prototype.includes){var f=function(e){"use strict";if(null==this)throw new TypeError("Array.prototype.includes called on null or undefined");var n=Object(this),t=parseInt(n.length,10)||0;if(0===t)return!1;var r,i=parseInt(arguments[1],10)||0;i>=0?r=i:(r=t+i)<0&&(r=0);for(var o;r
Patients were involved in all stages of the study, including the initial conceptualisation and formative work leading to the development of SMS4BG (for more information, see the development paper28). Patient feedback informed the intervention modality, purpose, and structure, and patients reviewed intervention content before it was finalised. Patient feedback on the acceptability of SMS4BG through the pilot study28 led to improvements to the intervention including additional modules, the option for feedback graphs to be posted, additional tailoring variables, and a longer duration of intervention. Patient feedback also informed the design of this trial—specifically its duration, the inclusion criteria, and recruitment methods. Additionally, patients contributed to workshops of key stakeholders held to discuss interpretation, dissemination of the findings, and potential implementation. We have thanked all participants for their involvement and they will be given access to all published results when these are made publicly available.
The message delivery was managed by our content management system, with messages sent and received through a gateway company to allow for participants to be registered with any mobile network. Sending and receiving messages was free for participants. The system maintained logs of all outgoing and incoming messages. Further details of the intervention can be seen in the published pilot study,28 and protocol.30
Your health professional at the Centre may suggest that they make a referral for you, if there are problems affecting your diabetes management or your overall health and management. Alternatively you can ask your family doctor or nurse to refer you. If you are uncertain about whether it would be helpful to see us, you are most welcome to phone us directly to discuss this. Phone 3640 860 ext 89113.
This study shows that the incidence of type 1 diabetes in the Auckland region has increased steadily over the last two decades. However, unlike other studies [3], [4], [5], the rate of increase in incidence has been particularly marked in older children (10–14 yr), which was approximately 2.5-fold greater than that in children 0–4 yr. Interestingly, the incidence of type 1 diabetes in children 0–4 and 10–14 in Auckland are very similar to those reported in Australia, our closest geographical and ethnic neighbours [19], both of which had very high case ascertainment levels (close to 100%).

Diabetes has become so common in the U.S. that there may be a danger of losing sight of just how serious a disease it is. In the diabetic community, there has long been a saying that diabetes won’t kill you, but its complications will. The list of complications is long and includes, heart disease, nerve damage, kidney failure, foot and leg amputation, blindness, Alzheimer’s and a host of others. And, while the saying about diabetes not killing you may be catchy, the truth, according to the American Diabetes Association, is that, “Diabetes remains the 7th leading cause of death in the United States in 2015, with 79,535 death certificates listing it as the underlying cause of death, and a total of 252,806 death certificates listing diabetes as an underlying or contributing cause of death.” (more…)
Along with a long list of other complications, gum disease can result from diabetes that is not properly controlled. The two main forms of gum disease are gingivitis and periodontitis. With gingivitis, the gums become red and swollen and may easily bleed. If not treated, this milder form of gum disease can become full-blown periodontitis, which is where the gums pull away from the teeth and infection takes a firm hold, leading to bone, tissue and tooth loss.
Contributors: RW obtained funding for this trial. All coauthors had input into the study protocol. RD, RW, RMu, and MS contributed to the development of the intervention content. RD managed the day-to-day running of the trial and delivery of the intervention. RD and RW collected the data. YJ and RD did the data analyses. All coauthors were involved in the interpretation of the results. RD wrote the article with input from all coauthors. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version of this manuscript. RD is guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Results The reduction in HbA1c at nine months was significantly greater in the intervention group (mean −8.85 mmol/mol (standard deviation 14.84)) than in the control group (−3.96 mmol/mol (17.02); adjusted mean difference −4.23 (95% confidence interval −7.30 to −1.15), P=0.007). Of 21 secondary outcomes, only four showed statistically significant improvements in favour of the intervention group at nine months. Significant improvements were seen for foot care behaviour (adjusted mean difference 0.85 (95% confidence interval 0.40 to 1.29), P<0.001), overall diabetes support (0.26 (0.03 to 0.50), P=0.03), health status on the EQ-5D visual analogue scale (4.38 (0.44 to 8.33), P=0.03), and perceptions of illness identity (−0.54 (−1.04 to −0.03), P=0.04). High levels of satisfaction with SMS4BG were found, with 161 (95%) of 169 participants reporting it to be useful, and 164 (97%) willing to recommend the programme to other people with diabetes.
{"id":"graph-580035b4969e8","type":"c3","legend":["DHB population","National population"],"rows":[["Other","73.0","77.7"],["M\u0101ori","25.1","15.8"],["Pacific","1.8","6.5"]],"rows_c3":[["DHB population","National population"],["73.0","77.7"],["25.1","15.8"],["1.8","6.5"]],"categories":["Other","M\u0101ori","Pacific"],"attributes":{"class":"d3graph","data-graph-desc":"Graph showing the percentage of population in different ethnic groups, within the DHB and nationally. ","data-graph-legend-position":"top-right","data-graph-render":"bar","data-graph-title":"Population by ethnicity, 2016\/17","data-graph-type":"c3","data-graph-xaxis-label":"Ethnicity","data-graph-yaxis-label":"Population (%)","data-graph-yaxis-suffix":"%","id":"580035b4969e8"}}
The average reduction of 4.2 mmol/mol (0.4%) in HbA1c seen in this study did not reach the level chosen to signify clinical significance in the initial power calculation (5.5 mmol/mol (0.5%) reduction in HbA1c). Therefore, this study is unable to conclude that the effects of the SMS4BG intervention are clinically significant. Although further investigation is needed, we believe the results have the potential to still be clinically relevant in practice, particularly among individuals with high levels of HbA1c, such as the participants with poorly controlled diabetes in this study. The unadjusted group difference on change in HbA1c from baseline was −5.89, −3.05 and −5.24 mmol/mol at three, six, and nine months, respectively. The main analysis, with adjustment for baseline value and stratification factors, showed a smaller treatment effect, although both results were significant at three and nine months. Similar results were found across major subgroups of interest despite the fact that these analyses were not specifically powered. These consistent findings led us to believe that the intervention shows promising effects on treating people with poorly controlled diabetes and warrants further investigation.
For example, adjusting to having diabetes; difficulty in making the life changes necessary to stay well; difficulty managing anger, conflict and other emotions related to your health; depression, sadness and grief; anxiety, worries, panic and phobias related to your health; eating difficulties; and difficulty with coping with the complications of diabetes.
We thank the participants who took part in this study as well as the staff at the primary care practices and diabetes clinics across New Zealand who referred their patients to the study; the National Institute for Health Innovation’s IT team for their work on the text message delivery system, and all those involved in the study design and set up; Coral Skipper, Louise Elia, Erana Poulsen, and Hamish Johnstone (Māori Advisory Group members); Aumea Herman (Pacific adviser); Joanna Naylor and Michelle Garrett (content development advisers); Richard Edlin (health economist); Mahalah Ensor (assistance with recruitment); Hannah Bartley, Rachel Sullivan, Anne Duncan, and Gillian Lockhart (research assistants); Michelle Jenkins and John Faatui (data management support); and Karen Carter and Angela Wadham (project management support).
Participants who were referred to the study by clinicians or who self referred were contacted by a research assistant via phone to discuss the study and confirm eligibility. All eligible participants completed informed consent followed by baseline assessment over the phone with a research assistant before randomisation. All participants continued with their usual diabetes care including all medical visits, tests, and diabetes support programmes throughout the study. In addition, the intervention group received SMS4BG. Control participants received usual care only. All participants completed a follow-up phone interview nine months after randomisation (within three weeks of the nine month date). HbA1c blood tests (at baseline, three, six, and nine months) were undertaken through standard care and results obtained through medical records.
One of the most important aspects of diabetes management is to maintain a healthy body weight. Being overweight not only increases your risk of heart disease, stroke and some cancers, it also makes your diabetes harder to manage. Small changes in your diet such as reducing your portion sizes and swapping to low-fat dairy products can help you to achieve a healthy body weight and manage your diabetes.
The incidence of type 1 diabetes was higher in New Zealand Europeans than other ethnic groups throughout the study period (Figure 2, p<0.0001). There was little difference in incidence among non-European ethnic groups. The annual incidences (per 100,000) by 2009 were: Europeans 32.5 (95% CI 23.8–43.3), Non-Europeans 14.4 (95% CI 9.2–21.4), Maori 13.9 (95% CI 5.2–29.7), Pacific Islanders 15.4 (95% CI 7.3–28.5), and Other 13.5 (95% CI 5.8–26.8). The rate of increase in incidence over the study period was very similar across all ethnicities, as illustrated by the slopes in Figure 2. However, while the average increase in incidence was higher for Europeans than Non-Europeans in children of all age groups (Table 1), the increase was proportionally lower in Europeans (2-fold) than Non-Europeans (3-fold) due to a lower baseline incidence in the latter group (Figure 2). Nonetheless, in both ethnic groups type 1 diabetes incidence in children 10–14 yr increased at a higher rate than in the youngest 0–4 yr group, with a >2-fold difference observed among both Europeans and Non-Europeans (Table 1). Age at diagnosis across the study period was similar in both ethnic groups (p = 0.47).

Your health professional at the Centre may suggest that they make a referral for you, if there are problems affecting your diabetes management or your overall health and management. Alternatively you can ask your family doctor or nurse to refer you. If you are uncertain about whether it would be helpful to see us, you are most welcome to phone us directly to discuss this. Phone 3640 860 ext 89113.
The 60.2% of HPs in our survey who had recommended a diabetes app is significantly higher than previously documented amongst physicians across a range of specialties [28], although it is similar to HPs’ recommendation for any type of health app [19]. We did not observe any effect of HPs’ age on app recommendation, although it is previously well established that younger HPs are more likely to adopt mHealth for diabetes [28].

This study contributes to the evidence around the use of SMS to support diabetes management.131415 The improvements in HbA1c seen in this study are similar to those reported in meta-analyses of SMS interventions in diabetes not limited to those with poor control.141641 Unlike previous studies that typically focus on a particular population defined by diabetes type, age, or treatment, the current study provided an intervention for all adults with either type 1 or type 2 diabetes under any treatment regimen, enhancing potential reach and generalisability. The only limit on the population was the requirement that participants had to have poor diabetes control. This criterion was particularly important given associated costs and debilitating complications of poorly controlled diabetes. Although few trials so far have examined the effectiveness of mHealth interventions in this population,42 this study provides evidence to support the use of this modality to provide diabetes education and support to individuals with poor control.
Constipation Cancer Athletic Injuries Mental Health Urgent Care Injuries Pregnancy Injuries Depression Aches Asthma Eating Disorders Fevers Acne Colds Skin Lesions Stds Alcoholism Chest Pain Sore Throats Astigmatism Altitude Sickness Hivaids Diabetes Blood Pressure Chronic Pain Infections Strains Obesity Accidents Endometriosis Moles Abscesses More Less
×